Package: moose 0.0.1

moose: Mean Squared Out-of-Sample Error Projection

Projects mean squared out-of-sample error for a linear regression based upon the methodology developed in Rohlfs (2022) <doi:10.48550/arXiv.2209.01493>. It consumes as inputs the lm object from an estimated OLS regression (based on the "training sample") and a data.frame of out-of-sample cases (the "test sample") that have non-missing values for the same predictors. The test sample may or may not include data on the outcome variable; if it does, that variable is not used. The aim of the exercise is to project what what mean squared out-of-sample error can be expected given the predictor values supplied in the test sample. Output consists of a list of three elements: the projected mean squared out-of-sample error, the projected out-of-sample R-squared, and a vector of out-of-sample "hat" or "leverage" values, as defined in the paper.

Authors:Chris Rohlfs [aut, cre]

moose_0.0.1.tar.gz
moose_0.0.1.zip(r-4.5)moose_0.0.1.zip(r-4.4)moose_0.0.1.zip(r-4.3)
moose_0.0.1.tgz(r-4.4-any)moose_0.0.1.tgz(r-4.3-any)
moose_0.0.1.tar.gz(r-4.5-noble)moose_0.0.1.tar.gz(r-4.4-noble)
moose_0.0.1.tgz(r-4.4-emscripten)moose_0.0.1.tgz(r-4.3-emscripten)
moose.pdf |moose.html
moose/json (API)

# Install 'moose' in R:
install.packages('moose', repos = c('https://carohlfs.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 2 scripts 170 downloads 1 exports 0 dependencies

Last updated 2 years agofrom:84e8df2263. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-winOKNov 11 2024
R-4.5-linuxOKNov 11 2024
R-4.4-winOKNov 11 2024
R-4.4-macOKNov 11 2024
R-4.3-winOKNov 11 2024
R-4.3-macOKNov 11 2024

Exports:moose

Dependencies: